OKLAHOMASTATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 4503
Random Signals and Noise Spring 2002

Midterm Exam \#1

Graduate Students do all five problems, others choose any four out of five.
Please specify below which four you choose to be graded.

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Given that two events \bar{A}_{1} and \bar{A}_{2} are statistically independent, show that A_{1} is also independent of A_{2},
i.e., given $P\left(\bar{A}_{1} \cap \bar{A}_{2}\right)=P\left(\bar{A}_{1}\right) P\left(\bar{A}_{2}\right)$, prove $P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right)$.

Problem 2:

A pharmaceutical product consists of 100 pills in a bottle. Two production lines used to produce the product are selected with probabilities 0.45 (line one) and 0.55 (line two). Each line can overfill or underfill bottles by at most 2 pills. Given that line one is observed, the probabilities are $0.02,0.06,0.88,0.03$ and 0.01 that the numbers of pills in a bottle will be $102,101,100,99$ and 98 , respectively. For line two, the similar respective probabilities are $0.03,0.08,0.83,0.04$ and 0.02 .
a) Find the probabilities that a bottle of the product will contain 99 pills and 102 pills.
b) Given that a bottle contains the correct number of pills, what is the probability it came from line two?
c) What is the probability that a purchaser of product will receive less than 100 pills in the bottle?

Problem 3:

A random variable X has the distribution function

$$
F_{X}(x)=\sum_{n=1}^{12} \frac{n^{2}}{650} u(x-n) .
$$

a) Show if this is a valid distribution function.
b) If so, find the probabilities of $P(-\infty<X \leq 6.5), P(X-2>4)$, and $P(|X-5|>3)$.

Problem 4:

The Laplace density function

$$
f_{X}(x)=\frac{1}{2 b} e^{-|x-m| / b}
$$

has a characteristic function

$$
\Phi_{X}(\omega)=\frac{e^{j m \omega}}{1+(b \omega)^{2}} .
$$

Use this characteristic function to find the mean and variance of the random variable X.

Problem 5:

In a computer simulation, it is desired to transform numbers, that are values of a random variable uniformly distributed on $(0,1)$, to numbers that are values of an exponential distributed random variables, as defined by

$$
F_{X}(x)= \begin{cases}1-e^{-(x-a) / b}, & x>a \\ 0, & x<a\end{cases}
$$

with $a=0$. Find the required transformation.

